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Biological systems composed of a eukaryotic organism 
and its microbiota are widespread in nature1–3. Also 
known as holobionts4, host–microbiota systems range 
in complexity from one- to- one symbiotic associations 
between a host and a single microorganism (such as the 
bioluminiscent Aliivibrio bacteria in light organs of bob-
tail squids5) to intricate arrangements between a host 
and a dynamic community of microorganisms (such as 
mammals and their gut microbiota6, or plants and their 
root microbiota7) (Fig. 1a). Many such systems play core 
functional roles in ecosystems or are fundamental to 
agricultural production (Fig. 1b). Hence, their study and 
manipulation have become a global strategic priority8,9.

The study of functional associations of eukaryotic 
hosts with microbial communities dates to at least the 
late nineteenth century, when researchers noticed, 
based on microscopy, that termite guts contained 
microbial species on which the termites appeared to 
rely10 and the intestines of infants hosted bacteria that 
aided in digestion11. Subsequent research on insects12, 
farm animals13 and humans14 relied on a combina-
tion of culture- based approaches, functional assays 
and microscopy to characterize the microbial taxa 
associated with these hosts. The more recent develop-
ment of culture- free molecular technologies has pro-
vided new ways to study and understand the complex 
details of such systems. Today, we are able to generate 
high- quality eukaryotic genome sequences (at the level 
of near- complete chromosomes)15 and recover virtually 
complete bacterial genomes from samples that con-
tain complex mixtures of DNA (such as faeces or plant 
roots)16 relatively quickly and in ways that are replicable 
within and among host species. Taken together, these 

advances enable the simultaneous characterization of 
the so- called hologenome17, that is, the entirety of the 
genetic information contained by a eukaryotic host and 
the microbial community associated with that host.

The terms hologenome and hologenomics used in 
this Review are primarily instrumental18,19. They reflect 
an approach to the study of microbes and hosts that is 
holistic rather than atomized and that transcends dis-
ciplinary and taxonomic boundaries. The simultane-
ous analysis of host and microbial genes and genomes 
naturally allows the study of fundamental evolutionary 
aspects of host–microorganism associations20 and, as 
a result, will contribute to discussions about general 
evolutionary models for the role of selection on hosts, 
microbes and their amalgams21–24. However, the utility 
of hologenomics is much broader as it has also proven 
valuable for the study of diseases25, the improvement of 
farming practices19,26 and in understanding molecular 
interactions between eukaryotic and prokaryotic cells27, 
to cite but a few examples.

Hologenomics leverages the latest advances in 
genomics and metagenomics to disentangle the com-
plexity of host–microbiota systems by using a systemic 
approach. This enables not only detailed profiling of the 
host genotype but also characterization of the microbial 
metagenotype and, by extension, the definition of the 
hologenotype. High- resolution characterization of all 
these units of analysis is only possible through the com-
bination of high- throughput DNA, RNA, protein and 
metabolite profiling28, novel mathematical tools to inte-
grate the different omic layers29,30, and the generation of 
high- quality reference genomes of both eukaryotic and 
prokaryotic organisms15,31. This hologenomic approach 

Metagenotype
The specific state of the 
microbial metagenome 
characterized at a particular 
moment and at a given 
resolution.

Hologenotype
The entire genetic constitution 
of an individual eukaryotic 
organism and its associated 
microorganisms characterized 
at a given moment and at a 
given resolution.
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is unlocking domains of knowledge that have remained 
inaccessible until recently because of their excessive 
complexity and the costs of data generation.

In this Review, we first address five fundamental cri-
teria that should ideally be considered in the design of 
any hologenomic study. In doing so, we explain the rel-
evant methods and model systems available to address 
a variety of biological questions using a hologenomic 
approach. Subsequently, we outline how the informa-
tion extracted using this methodology can be used to 
address major outstanding questions in life sciences and 
to design novel interdisciplinary approaches to expand 
our knowledge horizon.

Designing hologenomic studies
Hologenomics can be used to understand how the 
combined features of hosts and microorganisms shape 
biological processes relevant for hosts (such as adapta-
tion), for microorganisms (such as meta- community 
dynamics) or both (Box 1). Depending on the aims and 

features of the study system, hologenomics can be imple-
mented using different study designs, model systems and 
techniques18,19,32. We propose that this landscape of pos-
sibilities is shaped around five essential questions that 
need to be considered when designing and interpreting 
hologenomic studies (Fig. 2), which relate to five core 
topics: hologenomic complexity, control of hologenomic 
variables, hologenomic resolution, spatiotemporal  
resolution and explanatory versus response variables.

Hologenomic complexity
Hologenomic complexity can be broadly defined as  
the amount of information relevant to the study that the 
biological system under analysis contains and it can be 
decomposed into three major elements: host genomic, 
microbial metagenomic and environmental complexity. 
Within each of these elements, two sources of complex-
ity can be defined: the intrinsic complexity of the system 
under study, including host genome size and number of 
bacterial genomes, and the complexity introduced by the 
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Fig. 1 | Diversity and ecological relevance of host–microbiota systems. 
a | Complexity gradient of microbial communities associated with specific 
body parts of various animals. Many Lepidoptera caterpillars have no 
detectable resident gut microbiota163. Bobtail squids maintain a symbiotic 
relationship with a single type of bacteria that colonizes their light organs, 
which provides them with skin luminescence5. Pea aphid bacteriocytes 
harbour one or two dominant bacteria along with a few secondary taxa with 
considerably lower representation164. The gut microbiota of bees is 
composed of a few types of bacteria114. Birds harbour a complex microbiota 
with hundreds of bacterial species165. b | Examples of different host–
microbiota systems and their relevance for ecosystem or applied processes. 
Photosynthetic dinoflagellates provide corals with a source of carbon in 

nutrient- poor tropical waters, forming the basis of coral reefs166. 
Lignocellulose- degrading bacteria in the gut of termites transform complex 
polysaccharides into short- chain fatty acids (SCFAs) and modify lignin from 
wood substrates167. The root microbiota of plants plays a central role in 
transforming complex organic compounds into simple nutrients that plant 
roots can absorb, thus boosting productivity7. The rumen microbiota is 
important for producing SCFAs and other essential compounds through the 
fermentation of complex plant polysaccharides, which act both as energy 
sources and signalling elements in animal hosts168. The gut microbiota of 
mice plays a crucial role in laboratory disease models because of their 
effects on many systemic conditions related to energy metabolism and 
immune response169.
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degree of difference between the organisms under com-
parison such as gene expression differences versus dis-
tinct genomes (Fig. 3). The combination of host genomic, 
microbial metagenomic and environmental complexity 
will determine the relevance of each factor in the study 
system and the questions that can be answered (Fig. 4). 
This information could be used either for selecting the 
most appropriate system to address a specific biological 
question or, when researchers are bound to a given sys-
tem, for adjusting the study design to the properties of 
the system.

Host genomic complexity. The intrinsic complexity of 
host genomes is primarily determined by features such as 
genome size, number of chromosomes, ploidy, amount 
of functional genetic elements and number of repetitive 
sequences33. These features vary across eukaryotes34,35 
and not only determine the degree of complexity under 
analysis but also how data are generated (for example, 
by considering complications related to reconstructing 

high- quality reference genomes). Thus, effective 
implementation of a hologenomic approach in a host 
organism whose genome is relatively simple and well 
characterized (such as Caenorhabditis elegans or Mus 
musculus) is more feasible than those with extremely 
large, duplicate- rich genomes (such as salamanders36 or 
polyploid plants37) (Fig. 3a).

Host complexity is also determined by the experi-
mental setup itself. Hosts under study may range from 
individuals with practically identical genomic fea-
tures (such as monozygotic twins38 or inbred mice39) 
to intraspecific variants (such as different landraces 
of plants40 or reproductively isolated populations of 
animals41) to different species or evolutionary lineages 
(for example, monocotyledonous versus dicotyledon-
ous plants grown in a common garden experiment42) 
(Fig. 3a). In this gradient of host genomic complexity, 
the lower extreme considers interindividual genomic 
variation mainly introduced by SNPs, which normally 
introduce subtle differences in the morphological (for 
example, intestinal crypt properties43) and biomolecu-
lar (for example, antimicrobial peptide and immuno-
globulin production44) features of the host. The upper 
extreme, meanwhile, typically addresses major genomic 
differences that yield important morphological and 
physicochemical changes that create conspicuous phe-
notypic differences across the hosts studied6. One inter-
esting exception relates to the consideration of how 
genetically determined sex can introduce large- scale 
changes to microbial communities within conspecifics45 
through the major structural differences sexual dimor-
phism can induce on the body46. Both types of genomic 
variation are known to shape the microbial communities 
associated with the hosts through multiple underlying 
mechanisms18.

Microbial metagenomic complexity. One fundamental 
aspect that determines intrinsic metagenomic complex-
ity is the breadth of taxa included in the definition of the 
microbial metagenome. Whereas early metabarcoding- 
based studies of hologenomes often focused on single 
taxa, such as bacteria (for which both marker genes and 
databases were available early), shotgun sequencing- 
based approaches allow the consideration of the entirety 
of the microbial metagenome. In truth, most microbial 
metagenomes can also include viruses47, other prokar-
yotes (such as archaea48 and Candidate Phyla Radiation 
nanobacteria49), and eukaryotes such as fungi50, 
protozoa51 and helminths52. Even when studied in its 
entirety, the microbial community of interest can range 
from a single microbial symbiont to a complex microbial 
community composed of thousands of taxa (Fig. 1a).

Metagenomic complexity is also shaped by the taxo-
nomic and functional differences among the microbial 
communities being compared, which can differ in terms 
of relative abundances of taxa or be compositionally 
distinct (Fig. 3b). However, gene expression differences 
caused by the highly dynamic nature of microbial com-
munities do not always lead to significant structural 
changes and functional redundancy means that micro-
bial turnover is not always translated into an effective 
functional change in the microbial ecosystem53.

Box 1 | Hologenomics from different perspectives

while host–microbiota systems cover a range of biological attributes (Fig. 1), the 
asymmetry between the host genome and the microbial metagenome is a fundamental 
feature that characterizes them all. the host genome typically belongs to a single 
multicellular macroorganism, whose generation time is usually much longer than that  
of its associated microbes. By contrast, the microbial metagenome represents the 
composite of the genomes of millions of unicellular organisms that may belong to 
hundreds or thousands of different taxa. in addition to their typically shorter generation 
times, they often exhibit a capacity for horizontal gene transfer that increases their 
adaptive potential170. as a result, whereas the host genotype is mostly fixed throughout 
the host’s life (although see discussion below), the microbial metagenotype and the 
resulting hologenotype change continuously150,171. Because of this and other differences 
addressed elsewhere21, the routes available for the host to affect the microbiota and 
vice versa differ, as does the information hologenomics provides when applied to 
describe a system from the microbial versus the host perspective.

the microbial perspective
the host provides the physical basis for the microbiota and defines many properties of 
their ecosystem172. Hence, the genomic features of the host contribute to configuring 
ecological niches that microorganisms can occupy173. For instance, gut morphology 
shapes oxygen gradients43, the production of lipids determines the structure of skin 
microbiota174 and host macrophages can exert direct selection on the microbial 
community175. in animals, the host genome can also indirectly affect the transmission, 
acquisition and community dynamics of the microbiota through moulding host 
behaviour — sociality, nursing behaviour and diet are three of the main factors that 
shape microbial communities associated with animals176–178.

Hologenomics is not only useful for studying how host genomic variation changes the 
conditions that the microbial communities experience but also for understanding how 
the microbiota alters host processes that shape such a landscape. Microorganisms can 
modulate the expression of specific genes in the host. in mouse models, for instance, 
intestinal spore- forming bacteria release metabolites that modify the expression  
of various host genes involved in the biosynthesis of serotonin132. Microorganisms can 
also trigger more complex systemic changes that induce developmental179 or 
behavioural180,181 modifications in the host, which can indirectly affect the environment 
in which microorganisms live.

the host perspective
Genomic features of microorganisms can influence host biology by causing disease182  
or enhancing biological capabilities125. Bacteria can significantly shape a myriad of host 
phenotypic traits due to their capacity to metabolize complex foods183, produce 
essential biomolecules184, modulate host gene expression132, promote epigenomic 
changes185 or trigger hormonal cascades186. Hologenomics can be used to understand 
how host genomic features condition the metabolic functions provided by its microbiota 
and how the metagenomic features of these microorganisms, along with the genotype 
of the hosts128, modulate essential biological processes for the host18.
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Environmental complexity. The complexity of environ-
mental factors, defined as any feature not directly deter-
mined by host genomic and microbial metagenomic 
properties, also plays an essential role when designing 
and interpreting hologenomic studies. Here, the envi-
ronment might include abiotic conditions (such as cold 
versus warm) but also habitat (such as swamp versus for-
est or zoo versus wild) or diet (such as plant based versus 
animal based). Gene expression patterns of both hosts 
and microorganisms as well as other features of hosts, 
such as behaviour or physiological state, are largely 
driven by environmental cues54–56. A gradient of intrinsic 
complexity of the environment can be defined, spanning 
from laboratory experiments, in which all environmen-
tal features are kept constant, to natural ecosystems, in 
which both abiotic and biotic conditions differ from 
place to place, time to time, and between individual 
hosts (Fig. 3c). Similar to host and microbial complex-
ity, environmental complexity is also determined by the 
experimental setup. The degree to which environmen-
tal conditions differ across the biological systems being 
compared will determine the overall environmental 
complexity of the study system.

Controlling hologenomic variables
Controlling the complexity of hologenomic variables 
is essential for addressing specific research questions. 
Broadly speaking, the more detailed and mechanistic 
the question under study, the greater the required con-
trol. For instance, research on specific biomolecular 
processes using laboratory models will require a higher 
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Fig. 2 | Overview of the five essential criteria for 
designing and interpreting hologenomic studies.  
1. Complexity. The complexity of a hologenomic system 
can be decomposed into three elements: host genomic 
complexity, microbial metagenomic complexity and 
environmental complexity. 2. Control of variables. What 
information can be recovered from host–microbiota 
systems will depend on whether and to what degree host 
genomic, microbial metagenomic and environmental 
complexity can be controlled, minimized or removed  
by the researcher. 3. Genomic resolution. The resolution  
at which the host genome and the microbial metagenome 
are characterized and, in consequence, how genotypes, 
metagenotypes and combined hologenotypes are 
defined, determine the genomic level of complexity  
at which to study a host–microbiota system.  
4. Spatiotemporal factors. Which questions can be 
addressed also depends on the intrinsic spatial and 
temporal features of hosts and microbial communities 
considered as well as on the spatial and temporal features 
of the study design. 5. Explanatory and response variables. 
Due to the multi- layered nature and bi- directional 
interactions in host–microbiota systems, the definition of 
explanatory and response variables and, thus, the question 
researchers want to answer will often be determined by 
the study design. ASV, amplicon sequence variant;  
COI, cytochrome oxidase subunit 1 gene; GBS,  
reduced representation genome sequencing through 
genotyping- by- sequencing; MAG, metagenome- 
assembled genome; mtDNA, complete mitochondrial 
genome; OTU, operational taxonomic unit;  
WGS, whole- genome sequencing.
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level of control than studying biogeographical patterns 
of host–microbiota interactions in wild organisms. 
The control of hologenomic variables can be achieved 
through a number of strategies.

Controlling host genomes. The control over host genomic 
complexity largely depends on the model organisms 
studied and the technical approaches employed. In lab-
oratory organisms that can reproduce asexually, such as 
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water fleas (Daphnia, Crustacea) and Lamiaceae plants, 
absolute control over host genotypes can be achieved by 
using clonal organisms57,58. When clones cannot be used, 
inbred laboratory animals can provide a high level of 
genomic homogeneity. The use of groups of genetically 
homogeneous hosts allows the effects of contrasting 
environmental conditions or specific microbial com-
munities to be compared59,60. Clonal and inbred models 
also enable the effects of a specific host genetic factor to 
be studied in a controlled genomic background through 
the application of targeted techniques for modulating 
gene expression (such as RNA- mediated interference) 
or for genomic engineering (such as CRISPR–Cas9)60,61. 
Working with humans and wild organisms does not 
enable such a degree of control over the genotypes stud-
ied unless in vitro models, such as organ- on- a- chip co- 
cultures of animal tissues and microbial communities, 
are generated62. When this level of control is not possi-
ble, coarse control over host genotypes can be achieved 
through contrasting animals from different populations 
or from closely related species63, while greater control 
can be achieved through comparing individuals across 
different degrees of kinship, such as monozygotic ver-
sus dizygotic twins38, and family members to other 
individuals64.

Controlling microbial metagenomes. Control over 
microbial metagenomic complexity is usually achieved 
through the modulation of microbial communities. 
Some strategies, such as modification of dietary regimes 
or the administration of microbiota- targeted additives or  
prebiotics, aim to modify microbial ecosystems by 
changing nutrient availability. However, unless com-
pounds that match the unique enzymatic capabilities of 
specific microorganisms are used65

, it is difficult to accu-
rately modulate the microbiota owing to the complex-
ity of ecological relationships among microorganisms. 
Alternative approaches to modify microbial communi-
ties include the inoculation of target bacteria (such as 
probiotics)66 and faecal microbiota transplantation67. 
The efficacy and accuracy of these methods is also var-
iable; there is no guarantee that inoculated bacteria will 
establish or modulate the microbiota, while transplanta-
tion does not enable accurate control over the microbial 
community introduced or the secondary elements that 
are transplanted along with bacteria68. These issues com-
plicate the interpretation of results; for example, bacte-
riophages transferred alongside bacteria may severely 
impact the gut microbiota composition69. A higher level 
of control could potentially be achieved through trans-
planting synthetic microbial communities70,71. While 
this approach has been successfully implemented in 
diverse in vitro setups72,73, the complexity of microbial 

communities still hinders its efficient use as a routine 
scientific procedure in live animals74. The metageno-
types of these synthetic communities could be further 
controlled by genetically engineering bacteria with 
the desired genetic properties75,76, which could even-
tually facilitate the assembly and control of interactive  
microbial consortia77.

Controlling the environment. In most laboratory stud-
ies, environmental complexity is reduced so that no 
or very few environmental parameters (usually only 
experimental treatments) vary among groups and sub-
jects. Climate chambers and aquaria provide absolute 
control of abiotic conditions such as light/dark cycles, 
humidity and temperature variations. Outdoor common 
garden experiments42 do not provide full control over 
environmental factors but they ensure that the effect on 
the systems being compared is identical. Some natural 
systems can also provide special conditions that enable 
environmental features to be controlled, such as cuckoo 
nestlings that are bred by other birds78, or sympatrically 
occurring but allochronically isolated populations such 
as salmon populations that breed in the same rivers in 
alternating years79. Research on wild organisms usually 
incorporates more complex and dynamic environmen-
tal conditions; when controlling them is not possible, 
it is useful to collect relevant environmental metadata, 
which can be incorporated as covariates in the statistical 
analyses. A century of ecological research has revealed 
the advantages of each of these approaches. On the one 
extreme, laboratory microcosms allow the most reduc-
tive control; on the other, studies in the macrocosm of 
the real world provide perspective on emergent prop-
erties of natural ecosystems that cannot be anticipated 
based solely on microcosms.

Hologenomic resolution
The complexity of a study system is not only determined 
by its inherent properties and study design but also the 
techniques and procedures employed to analyse it. 
Researchers can decide how much a system is simpli-
fied by altering the resolution of the hologenomic fea-
tures under study80; in essence, zooming in or zooming 
out. The biological resolution of hologenomic studies 
can be increased by not limiting the study of host and 
microbial community features to the genomic level but 
rather by incorporating additional molecular data lay-
ers associated with both host genotypes and microbial 
metagenotypes81 (TaBle 1). As long as appropriate sample 
preservation and laboratory processing procedures are 
adopted, high- throughput DNA sequencing platforms 
and mass spectrometry instruments can be used to 
generate multiple layers of biological information that 
enhance the resolution when trying to ascertain bio-
logical interactions between hosts and microbial com-
munities. Multi- omic approaches that incorporate data 
from hosts and associated microorganisms, defined as 
holo- omics18, generate hypercomplex datasets that may 
require the dimensionality of the data to be reduced to 
gain power. However, it is crucial to acknowledge that 
reducing resolution comes with an increased risk of 
overlooking essential parts of the total variability that 

Fig. 4 | Hologenomic complexity of study systems. Different study systems hold different 
levels of complexity, which limit the range of scientific questions that can be addressed.  
a | Six examples of study systems with different levels of genomic, metagenomic and 
environmental complexity. b | Three- dimensional representation of the complexity  
of the examples. The area of the plain represents the combined host genomic and 
microbial metagenomic complexity of the system, while the height represents the 
environmental complexity. The combined three- dimensional volume represents  
the overall hologenomic complexity of the system. HMP, Human Microbiome Project.
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Table 1 | examples of techniques used in hologenomics and the level of information they generate

Data type Hologenomic 
domain

Molecular details information revealed

(Meta)genomic layer

Targeted 
sequencing  
of markers

Host Typical markers in animals include the mitochondrial 
cytochrome oxidase 1 gene (a standardized animal 
DNA barcode) and the whole mitochondrial genome 
sequence; typical markers in plants include chloroplast 
rRNA genes and the entire chloroplast genome sequence

Species identification based on conserved organelle 
markers and potential inference of phylogenetic 
lineages within species

Microbiota Typical markers include the 16S rRNA ribosomal gene  
(a standardized bacterial DNA barcode) and the 
internal transcribed spacer gene (a standardized fungal 
DNA barcode)

Basic association of population structure with broad 
microbial community taxonomic patterns; preliminary 
assignment of inferred function to the microbiota

Partial genome 
sequencing

Host Approaches include genotyping- by- sequencing 
(in which a reduced representation of the genome, 
often selected via the use of restriction enzymes, is 
sequenced) and SNPchip (which uses a pre- designed 
chip with a given number of known SNPs and genotypes 
are discerned using allele- specific primers)

The reduced representation of the genome- wide 
variation of the eukaryotic host is sufficient to allow 
low- resolution GWAS to associate host genotype with 
variation in microbiota profiles

Microbiota Shallow shotgun metagenomics As for targeted sequencing of markers but with 
improved functional resolution of microbial genes 
present in a sample

Whole- genome 
sequencing

Host All DNA fragments in a sample are sequenced followed 
by mapping against a reference genome from the 
species or group being studied

Screening of all segregating SNPs in the genome of 
the study host organisms enables the identification 
of causative genes and regions associated with 
microbiota profiles

Microbiota Deep shotgun metagenomics Provides greatly improved resolution compared with 
partial genome sequencing, including recovery of more 
complete and less redundant MAGs to potentially 
allow strain- level analyses, identification of causal 
genetic variants in MWAS and discovery of potential 
function in rare microbial community members

(Meta)epigenomic layer

DNA 
methylation 
profiling

Host Whole- genome bisulfite sequencing is used to 
characterize methylation patterns of single cytosine 
nucleotides across the genome158

DNA methylation patterns can be used to infer gene 
expression patterns

Microbiota Single- molecule real- time sequencing of metagenomic 
DNA reads is used to generate long DNA reads

DNA methylation patterns can be used to infer gene 
expression patterns and to improve metagenomic 
binning159

Histone 
modification 
profiling

Host MS is used to characterize the histone components  
of the epigenome and their combinatorial PTMs;  
SERS enables the sensitive detection of histone 
demethylase activity by observation of formaldehyde 
by- products160

Characterization of histone proteins and their PTMs 
enables the inference of gene expression patterns 
and of the host genome–transcriptome–microbial 
metagenome axis

Microbiota NA NA

Genome 
conformation 
profiling

Host Hi- C can be used to reconstruct the three- dimensional 
folding of chromosomes and to improve scaffolding  
of contigs into genomes91

Enables the association of host genomic variation with 
microbiota profiles at levels beyond SNP and basic 
copy number variation, for example, the 3D association 
of distantly spaced loci

Microbiota Hi- C can be used to accurately resolve MAGs161 Enables MWAS accounting for interactions between 
spatially distant host genomic loci; allows analysis of 
horizontal gene transfer dynamics in different hosts162

(Meta)transcriptomic layer

Targeted RNA 
sequencing

Host Real- time PCR can be used to detect and measure gene 
expression levels of a subset of predefined genes

Generates single gene expression profiles

Microbiota Generates single gene expression profiles in which the 
gene may be present in multiple microbial species with 
identical gene functions

Non- targeted 
RNA sequencing

Host Shotgun RNA sequencing of genome- wide host 
transcripts

Enables profiling of all transcribed genes in the 
host genome from a specific tissue sample such as 
liver or gut epithelium; enables the detection of 
differentially expressed genes among study groups and 
associations with, for example, epigenetic profiles and 
metagenotypes

www.nature.com/nrg

R e v i e w s



0123456789();: 

lie under a certain grouping threshold (for example, 
strain- level variation of microbiota or interindividual 
variation in hosts). The use of automatic dimensional-
ity reduction techniques, such as principal components 
analysis or partial least squares regression, can also  
complicate the biological interpretation of the results82.

Host genotypes. In host–microbiota studies, host 
genotypes can be defined at different levels, includ-
ing species, breeds, populations83,84, strains85, sex or 
individuals86. Genotypes can be defined as categorical 
variables, without analysing the differences between 
them, or can be studied in more detail by considering 
their actual genetic content and establishing correlations 
among them86. When using an evolutionary perspec-
tive, phylogenetic relationships between genotypes are 
established based on phylogenomic markers87, which 
usually vary above population and species level but  
not among individuals. This implies that genomic vari-
ability among the individuals included within each geno-
type is overlooked. Studying the effect of interindividual 
genomic variability on host–microbiota systems, such 
as identifying candidate host genomic variants asso-
ciated with microbial features, requires a higher level of  
resolution. This is achieved by defining genotypes at the 
individual level and using techniques based on whole- 
genome resequencing that enable the complexity of  
host genomes to be screened at a much finer level such 
that differences between the individuals contrasted 
are not only defined based on their kinship but also 
on the functional properties of their genomic variants. 
Currently, this approach requires high- quality reference 
genomes from which high- density SNP profiles of indi-
viduals can be generated, for example, through SNPchip 
or resequencing studies15. The genomic resolution could 
be further refined by incorporating structural variants88, 

methylation patterns89,90 or, even, we hypothesize, chro-
mosome 3D folding structure as revealed through 
techniques such as Hi- C91. In doing so, researchers 
can identify associations between SNPs or gene vari-
ants and specific microbiota traits, such as the relative 
abundance of certain taxa or the enrichment of a given 
function, and thus identify mechanisms by which a host 
exerts control over the composition and function of its  
associated microbiota92.

Microbial metagenotypes. The structure and resolu-
tion at which microbial metagenotypes are defined also 
affects the complexity of the metagenome under analy-
sis. Metagenotypes can be defined as arrays of microbial 
taxa, microbial genes or a combination of both. The most 
common approach to define them is to rely on short 
marker sequences targeted for metabarcoding purposes 
such as the 16S ribosomal RNA (rRNA) or the internal 
transcribed spacer93. Based on sequence similarity, the 
microbial sequences detected can be clustered into oper-
ational taxonomic units that approximate the species- 
level identity of microorganisms (usually using a 97% 
similarity threshold) or can be analysed at a finer level 
as amplicon sequence variants with the aim of approach-
ing strain- level resolution93. However, these procedures 
often do not enable reliable taxonomic assignment at 
genus or species level94, do not capture sub- amplicon 
sequence variant strain- level community dynamics (as 
shown by a recent non- peer- reviewed preprint95) and 
are prone to generating biased functional inferences as 
bacteria with identical marker genes (particularly those 
associated with wild taxa) might carry very different 
catalogues of genes96. Thus, while useful for estimating 
microbial diversity and obtaining preliminary insights 
into functionality97–99, targeted sequencing approaches 
do not provide conclusive evidence about the metabolic 

Data type Hologenomic 
domain

Molecular details information revealed

(Meta)transcriptomic layer (cont.)

Non- targeted 
RNA sequencing 
(cont.)

Microbiota Shotgun RNA sequencing of metagenome- wide host 
transcripts

Enables profiling of all expressed genes from the 
microbial domain irrespective of metagenomic origin; 
reveals information about the functional properties of 
host- associated microbiomes and is directly related to 
the metabolomics landscape

(Meta)proteomic and metabolomic layers

Targeted 
profiling

Host LC- MS, GC- MS, IC- MS and NMR can be used to identify 
different substances, such as metabolites or protein 
molecules, within a test sample; NMR is less sensitive 
than MS- based methods

Provides absolute quantification of a small number of 
predefined proteins and metabolites to help discern 
functional relationships between host and microbiota; 
proteins can be assigned to coding genes originating 
from either the host genome or the metagenome; 
metabolites reveal active pathways that are controlled 
by host and/or microbiota gene functions in a given 
environment such as the gut or inside host tissues

Microbiota

Non- targeted 
profiling

Host Provides a semi- quantitative global overview of 
proteins and metabolites to help discern functional 
relationships between host and microbiota as 
described above for the targeted approaches

Microbiota

GC- MS, gas chromatography–mass spectrometry; GWAS, genome- wide association study; IC- MS, ion chromatography–mass spectrometry; LC- MS, liquid 
chromatography–mass spectrometry; MAGs, metagenome- assembled genomes; MS, mass spectrometry; MWAS, metagenome- wide association study;  
NA, not applicable; PTMs, post- translational modifications; rRNA, ribosomal RNA; SERS, surface- enhanced Raman scattering.

Table 1 (cont.) | examples of techniques used in hologenomics and the level of information they generate
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capabilities of the microbiota, particularly when working 
with non- human systems100.

By contrast, if appropriate strategies and adequate 
sequencing depths are employed, shotgun metagenom-
ics enables bacterial genome sequences to be recovered 
from which genes can be predicted and annotated to cre-
ate a gene catalogue that can define a metagenotype101,102. 
However, these genes are not randomly distributed but 
enclosed within genomes of specific bacteria or other 
microorganisms, with a particular combination of 
genes that shape their expression and the specific bio-
logical features (such as oxygen affinity, reproduction 
time, metabolic capacity) that determine their ecology. 
Hence, a more refined characterization of microbial 
metagenotypes can be achieved through binning algo-
rithms that enable bacterial genome reconstruction 
from metagenomic mixtures16, yielding metagenome- 
assembled genomes (MAGs). Nevertheless, unless 
short- read sequencing is combined with long- read 
approaches, it is challenging to capture multi- copy genes 
such as the 16S rRNA marker gene103, which is often 
employed in metabarcoding studies and therefore rep-
resents a useful link to a large number of existing stud-
ies. However, machine learning- based solutions to link 
16S rRNA marker gene sequences with MAGs are being 
developed104. Finally, regardless of the approach used to 
define the microbial metagenotype, the complexity of 
microbial communities will often require a dimension-
ality reduction to increase statistical power105,106. This can 
be achieved by defining co- abundance clusters, ecolog-
ical guilds or more complex strategies that also con-
sider temporal features of microbiota variation such as  
compositional tensor factorization107.

Envirotypes. The characterization of environmental fac-
tors that affect the host–microbiota system under study 
enables the definition of envirotypes, a term drawn 
from crop sciences108 that is useful in accounting for 
environmental factors in the hologenomic context. Any 
different physical place or a place sampled at different 
time points will be exposed to a different environment 
as conditions will seldom be identical between two spa-
tial and temporal points. Hence, the resolution at which 
the composite of environmental factors is considered 
will define whether these two environments will be 
thought of different envirotypes or not. For example, if 
only considering water temperature, killer whales sam-
pled in the Arctic and the Antarctic seas experience the 
same envirotype. However, if the biotic composition is 
also considered in the definition of the environment, 
the Arctic and the Antarctic will need to be split into 
two distinct envirotypes as some killer whales will have 
access to penguins as a food source while others will 
not109. The same principle applies to laboratory setups 
or mesocosm experiments: a temperature shift of 2–3 °C 
might not be considered relevant under some experi-
mental setups, while it can define different envirotypes 
under other study designs. Finally, the failure to recog-
nize environmental factors that affect host–microbiota 
interactions and thus define relevant envirotypes can 
lead to increased noise and a decreased capacity to 
achieve statistical significance.

Spatiotemporal resolution
Spatial resolution. Microbial communities associated 
with animal and plant hosts vary not only across coarse 
body parts110 but also at the microscale111,112 such as 
between the lumen and the intestinal crypts113. Thus, the 
resolution at which a body site is defined will also deter-
mine how a hologenomic system is characterized. For 
example, the animal gastrointestinal tract can be consid-
ered a single sampling unit114, 4–5 units65,115 or hundreds 
of micro- units111,112 depending on the sampling and data 
processing strategies employed. Naturally, each level of 
resolution will allow different questions to be addressed 
and will require the use of different technologies and 
analytical approaches.

Temporal resolution. Temporal features to be consid-
ered include when, how often and for how long host–
microbiota systems are to be analysed. Researchers must 
consider when a host is first exposed to microbes with 
regard to temporal benchmarks (number of days or 
years), as well as the order in which it is exposed to them. 
Priority effects relate to how the order of species arriv-
als in an ecosystem shape the potential for subsequently 
arriving taxa to establish themselves116. Although orig-
inally discussed at the macroorganismal level in the 
context of plant communities117, the phenomenon is 
also relevant for building host- associated microorgan-
ism communities118, for example, as documented in the 
human gut119,120. In addition, microbial communities 
are known to vary daily121, seasonally122 and relative to 
life- stage patterns123. Hence, the extent and frequency 
of sampling determine which of these dynamics will be 
observed or, conversely, missed. Finally, it is important 
to consider that the consequences of changes at one 
time period or life stage may appear only later in time 
and thus detection of such effects obviously requires 
that the subsequent period is also studied. For example, 
interventional animal experiments show that, when the 
immune system develops early in life, there is a win-
dow of opportunity where the gut microbiota com-
position shapes the risk of developing diseases in the  
future123,124.

Explanatory and response variables
Host genomic and microbial metagenomic data gen-
erated under hologenomic setups can take on differ-
ent roles when generating statistical models. While the 
environment is most often considered as an explana-
tory variable (though one can also study how the hol-
ogenome affects the environment), the host genome 
and the microbial metagenome are sometimes viewed 
as explanatory and sometimes as response variables, 
depending on the aim of the research. In many cases, 
directionality is set by the researcher rather than the 
biological system itself, as host–microbiota systems 
contain many bi- directional interactions and circu-
lar processes, which complicate the establishment 
of causal relationships. Here, we define three basic 
models in which the three main variables (genome, 
metagenome and environment) are assigned differ-
ent roles to address different types of fundamental  
questions (Fig. 5).

Metagenome- assembled 
genomes
(Mags). Partial or 
semi- complete draft bacterial 
genomes reconstructed 
through metagenomic 
assembly and binning from 
samples containing mixtures  
of microbial taxa.
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Phenotype as a product of genotype, metagenotype 
and envirotype. This is the main model used when 
hologenomics is conducted to ascertain how genome–
metagenome–environment interactions affect the bio-
logical properties of a host such as disease susceptibility, 
performance or fitness. It is an especially common and  
relevant model for health, agricultural, ecological  
and evo lutionary research19,125–127. One clear example of a 
phenotype shaped by host genomic, microbial metagen-
omic and environmental factors was recently reported 
for rough- skinned newts128. The study showed that 
bacteria on the skin of the newts produce a deadly neu-
rotoxin from which the newt is protected by mutations 
in five host genes that encode the voltage- gated sodium 
(NaV) channels normally targeted by the toxin. Thus, 
this ‘toxic newt’ phenotype is the result of both host and 
microbial genes, which likely evolved under the pressure 
exerted by an environmental factor, namely the presence 
of predators (Fig. 5a).

Genotype expression influenced by metagenotype and 
envirotype. When studying how core host genomic 
features, which contribute to shaping phenotypes, 
are affected by the microbiota, host genomic features 
become the response variable. Unlike the microbial 
metagenome, the genome sequence of the host organ-
ism is not variable but microorganisms can induce 
chromatin remodelling129 and DNA methylation of the 
host genome (reviewed in reF.130) (Fig. 5b) and thus mod-
ulate the bioactivity of molecular receptors131 and host 
gene expression66,132,133. A well- studied pathway that 
links the microbiota with host gene expression involves 
modulation of the activity of host histone deacetylases 
(HDACs) by short- chain fatty acids (SCFAs) produced 
by intestinal microorganisms. HDACs remove histone 
lysine acetyl groups, which leads to chromatin con-
densation and transcriptional silencing of genes134. 
Increased SCFA concentrations inhibit HDACs, 
thereby enhancing chromatin accessibility and acti-
vating gene expression. Thus, a metagenotype with a 
higher capacity to produce SCFAs combined with an 
envirotype required to produce SCFAs (that is, a fibre- 
rich diet), contributes to boosting the host immune 
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Fig. 5 | examples of biological processes addressed by 
the different models of host–microbiota interactions.  
a | How does the hologenome shape animal phenotypes? 
Only the combination of specific host genotypes (G) and 
microbial metagenotypes (MG), probably resulting from a 
selective force exerted by the presence of predators (that 
is, a specific envirotype (E)), enables rough- skinned newts 
to have skin toxicity128, an ecologically relevant phenotypic 
trait. b | How do the microbial metagenome and 
environment shape host genomic features? Short- chain 
fatty acid (SCFA)- producing bacteria along with a fibre- rich 
diet enhance chromatin accessibility and thus activate 
immune gene expression135. c | How do the host genome 
and the environment shape microbial genomic features? 
Only the combination of a lactase non- persister genotype 
combined with the milk- drinking envirotype generates a 
microbial metagenotype characterized by the enrichment 
of Bifidobacterium. HDAC, histone deacetylase;  
NaV, voltage- gated sodium; P, phenotype.
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response through the activation of host immune gene 
expression135.

Metagenotype as a product of genotype and envirotype. 
This model assumes the inverse causal directionality 
between the host genome and microbial metagenome to  
that described above. Candidate host genes related 
to microbiota features can be identified through 
genome- wide association studies (GWAS) in which 
the metagenotype (or derived metrics, such as diver-
sity or abundance of specific microbial taxa, genes or 
metabolic functions92) are treated as a phenotypic trait. 
For instance, the increased abundance of the lactose 
degrader Bifidobacteria in humans has been shown to be 
associated with the lactase non- persister genotype and 
the consumption of milk (envirotype)136. Once candidate 
genes are known, targeted analyses in which natural or 
human- controlled genomic variability (such as the num-
ber of copies of the amylase- encoding gene in humans) 
can be contrasted under controlled environmental con-
ditions to ascertain the effect on metagenotypes (such as 
the abundance of Ruminococcaceae bacteria in the gut 
microbiota)137 (Fig. 5c).

Biology through the hologenomics lens
The concepts, techniques and designs introduced so far 
should provide the necessary background to identify the 
study designs and associated methodologies most useful 
for addressing specific scientific questions as well as for 
devising interdisciplinary approaches to open up new 
research avenues.

Outstanding questions
Below, building on the work of others18,19,32, we outline 
how hologenomics is already being used to address 
some of the major questions concerning animal–micro-
biota interactions. We also provide our view on how 
hologenomics could be used in both the near and far  
future.

Does environment outweigh host genetics in deter-
mining the microbiota? A recurrent question in host–
microbiota research is the relative contribution of 
host genetics versus the environment in shaping the 
microbiota. Researchers have attempted to answer this 
question based on humans136,138, laboratory models139 
and wild organisms140, with no overall consensus. We 
argue that the lack of consensus is because of the often 
poorly described range of genomic and environmental 

complexity considered in such studies. As a result, 
comparisons among studies or even within studies are 
rarely like- to- like. Take, for example, the interindividual 
genomic variation of red junglefowls, the wild ancestors 
and closest living relatives of the domestic chicken Gallus 
gallus141. The environmental complexity in the wild hab-
itat in which these animals live may, under normal cir-
cumstances, almost completely mask the effect of host 
genomic variation142 because the effect size of extrinsic 
factors is much larger than any intrinsic features of the 
host or associated microorganisms (wild populations 
example in Fig. 4). However, the same level of genetic 
variation may have a very different impact in the case 
of conventionally shed- raised farm chickens that live 
under highly controlled and uniform environments18,19 
(production animal example in Fig. 4). Hence, consider-
ing the three axes of complexity (host genomic, micro-
bial metagenomic and environmental) defined in this 
article is essential to understand the relative nature of 
host–microbiota interactions as identical metrics in one 
axis of complexity (for example, the host genome) can 
have different consequences or relevance depending 
on the complexity of the other axes (for example, the  
environment) (Fig. 6).

Do host–microbiota interactions shape host fitness?  
It is known that, in at least some species and in particu-
lar contexts, microbial metagenotypes can shape host 
fitness125,143. How the interactions between host genomic 
and microbial metagenomic features modulate fitness is 
less clear as are the conditions under which microbial 
communities are expected to have the biggest effects on 
host fitness. Hologenomics could be a valuable asset in 
clarifying these points and to test theory as it develops. 
For instance, recent studies have shown that the fitness 
of Drosophila melanogaster is influenced by the specific 
composition of their gut microbial communities144, that 
laboratory mice reconstituted with natural microbiota 
exhibit reduced inflammation and increased survival 
following infection by influenza virus145, and that the 
enrichment or depletion of specific microorganisms 
can differentially affect the fitness of water fleas as can 
environmental factors such as temperature146. However, 
none of these studies analysed host genomic variability. 
Incorporating information on individual host genotypes 
could not only be helpful to better explain fitness varia-
tion (Fig. 6c) but could also cast light on the mechanistic 
processes through which microorganisms affect host 
fitness by identifying the host genetic variants associ-
ated with microbial metagenomic features. Here, the 
hologenomic perspective provides insight not just into 
whether microbes influence phenotype but also under 
what context they are most likely to influence it.

Do microorganisms shape host evolution? The fact 
that microorganisms can shape host fitness renders 
the microbiota a potential modulator of host evolution. 
An essential step in determining whether (and, per-
haps more usefully, when) this is the case is to unveil 
the degree of interdependence between microbial 
metagenotypes and host genotypes when shaping core 
phenotypic features that impact fitness. For example, 

Fig. 6 | Decomposition of hologenomic complexity and its impact on results.  
a | Variation of different properties that determine hologenomic systems among  
four example holobionts (H1–H4). The similarity of different properties is reflected by 
colour tonality; the closer the colour tone, the more similar the considered property.  
b | Representation of the relative impact of host genomic and environmental factors  
in determining microbial metagenotypes under different scenarios. The relative effect  
of the environment with respect to that of the host genome in shaping microbial 
metagenotypes is expected to be larger in the wild, where the environment is highly 
variable, than in a farm setup, in which environmental conditions are controlled.  
c | Representation of the importance of incorporating host genomic information to 
increase the resolution to predict phenotypes. The inclusion of host genomic information 
will provide additional detail that can help explain the phenotypic variability observed.  
E, envirotype; G, genotype; HG, hologenotype; MG, metagenotype; P, phenotype.
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major host dietary shifts are often believed to have been 
facilitated by the functional characteristics of associ-
ated microbiota147. Host phylogenetic approaches have 
revealed a general pattern across animal gut microbiotas 
whereby the acquisition of ancient and large microbial 
lineages coincides with changes in host diet, whereas 
more recently diverged bacterial lineages correlate with 
host phylogeny87. More detailed approaches in which 
functional traits of hosts and microbiota are analysed 
jointly can provide (and indeed have provided) insights 
into how microorganisms shape host evolution. For 
instance, a hologenomic approach revealed that the 
genomes of vampire bats as well as the metagenome 
of their gut microbiota encode key traits that together 
enable them to overcome the nutritional and meta-
bolic challenges of sanguivory20. The full exploitation 
of such functional approaches requires high- quality 
reference genomes, which are now being generated 
for a wide range of eukaryotic organisms by a range 
of international consortia15. Hologenomics based on 
the resequencing of fully annotated host genomes and 
MAGs would reveal whether hosts have developed 
adaptations to microorganism- mediated signals (such 
as differential activity of SCFA receptors148) or whether 
functional traits have been transferred from the host 
genome to the microbial metagenome and vice versa. 
The adaptive implications of human genomic and 
microbial metagenomic variation have been recently  
reviewed149.

Does the microbiota provide an adaptive buffer to their 
hosts? Joint analysis of host genomic and microbial 
metagenomic features could reveal whether microorgan-
isms enable initial responses to environmental changes, 
thus buffering host genomic adaptations that may 
require multiple generations150. Such challenges include 
rapid climate- linked environmental change but also the 
often radical change of conditions faced when wild spe-
cies enter the human environment; for example, during 
domestication or feralization an organism may have 
to adapt to a very different physical environment and 
change its diet and behaviour. Hologenomics provides 
the ideal means to test this hypothesis through obser-
vational approaches that compare the hologenotypes of 
wild and domesticated animals with intermediate- state 
counterparts that might have undergone metagenomic 
adaptation before developing any genomic adaptation 
or through the experimental manipulation of laboratory 
populations subjected to environmental changes. For 
instance, a recent study showed that multi- generational 
sub- toxic exposure of Nasonia vitripennis wasps (and 
their microbiome) to a pesticide resulted in metagen-
omic adaptation that increased the rate of host genome 
selection151.

Do hosts shape microbial evolution? Given their tight 
interactions, it is possible that the evolution of micro-
organisms with high heritability (that is, the proportion 
of the variability in the microbiota across host individ-
uals that is attributable to host genetic effects) is shaped 
by their hosts152,153. In a recent study154, a hologenomic 
approach was used to show that polymorphisms in 

innate and adaptive immune genes affect microbiota 
composition and that the microbial taxa most affected 
by mice genomic background (that is, those with the 
highest heritability) are those that get bound by host IgA 
such as Mucispirillum155. These results suggest that some 
microbes may have adapted to host immune mecha-
nisms to thrive in host environments. While widespread 
and long- lasting co- evolution between a specific host 
and most microorganisms seems unlikely156,157, holog-
enomic approaches could explore, for example, whether 
co- diversification and co- phylogeny patterns of IgA- 
bound and unbound bacteria differ and thus contrib-
ute to our understanding on how animals can shape the 
evolutionary pathways of microorganisms.

Future perspectives
Hologenomic researchers will continue to leverage the 
novel laboratory technologies developed in diverse fields 
of science (such as spatial metagenomics or CRISPR–
Cas9 approaches) and the ever- increasing availability 
of annotated genes and genomes. While doing so will 
improve the resolution at which the biomolecular prop-
erties of both host and bacterial communities are char-
acterized, the maximum potential of hologenomics will 
only be achieved if statistical tools are further developed 
that enable host genomic and microbial metagenomic 
features to be fully integrated. Meanwhile, the efficiency 
of hologenomic research will increase when technology 
enables an optimal combination of in vivo and in vitro 
approaches. Although in vitro modelling of the complex 
intestinal environments of diverse hosts is challenging, 
the development of organ- on- a- chip organoid models 
is starting to enable more sophisticated in vitro stud-
ies of interactions between microbial communities and 
eukaryotic tissues.

Besides technological improvement, a major chal-
lenge in the use of hologenomics will be thinking clearly 
about those aspects of the story of life that can be best 
studied using hologenomics. What are the biggest ques-
tions that can now be resolved that could not before? 
Additionally, what are the predictions for the outcomes 
of particular studies? We suspect that cross- disciplinary 
collaborations will be critical to identifying the most 
important and relevant applied and theoretical research 
questions to which hologenomics can contribute  
substantial advances in understanding.

While the field of hologenomics continues to 
advance, the complexity of most host–microbiota sys-
tems and the substantial costs of the methodologies 
used to characterize them will always require careful 
assessment of the biological features of the system under 
study and a critical evaluation of the capacities and lim-
itations of the available techniques. Ultimately, holog-
enomics will be most useful if it is used in a way that 
leverages its strengths and makes clear its limitations. 
Only a balanced combination of innovative and critical 
thinking will enable the design of fully powered studies 
to address some of the most challenging and insightful 
questions about the interconnectedness of life forms  
on Earth.
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